
An Evaluation of User-Level Failure Mitigation
Support in MPI

Wesley Bland1, Aurelien Bouteiller1, Thomas Herault1, Joshua Hursey2,
George Bosilca1, and Jack J. Dongarra1

1 Innovative Computing Laboratory, University of Tennessee
{bland, bouteill, herault, bosilca, dongarra}@eecs.utk.edu

2 Oak Ridge National Laboratory
hurseyjj@ornl.gov

Abstract. As the scale of computing platforms becomes increasingly
extreme, the requirements for application fault tolerance are becoming
so as well. Techniques to address this problem by improving the resilience
of algorithms have been developed; but they currently receive no support
from the programming model, and without such support, they are bound
to fail. This paper discusses the failure-free overhead and recovery impact
aspects of the User-Level Failure Mitigation proposal presented in the
MPI Forum. Experiments demonstrate that fault-aware MPI has little
or no impact on performance for a range of applications, and produces
satisfactory recovery times when there are failures.

1 Introduction

In a constant effort to deliver steady performance improvements, the size of High
Performance Computing (HPC) systems, as observed by the Top 500 ranking3,
has grown tremendously over the last decade. This trend is unlikely to stop, as
outlined by the International Exascale Software Project (IESP) [9] projection
of the Exaflop platform; a milestone that should be reached as soon as 2019.
Based on the foreseeable limits of the infrastructure costs, an Exaflop capable
machine is expected to be built from gigahertz processing cores, with thousands
of cores per computing node, thus requiring millions of computing cores to reach
the mark. Even under the most optimistic assumptions about the individual
components’ reliability, probabilistic amplification from using millions of nodes
has a dramatic impact on the Mean Time Between Failure (MTBF) of the entire
platform. The probability of a failure happening during the next hour on an
Exascale platform is disturbingly close to 1; thereby many computing nodes will
inevitably fail during the execution of an application [7]. It is even more alarm-
ing that most popular fault tolerant approaches see their efficiency plummet at
Exascale [3, 4], calling for application centric failure mitigation strategies [15].

The prevalence of distributed memory machines promotes the use of the
message passing model. An extensive and varied spectrum of domain science ap-

3 http://www.top500.org/



plications depend on libraries compliant with the MPI standard4. Although un-
conventional programming paradigms are emerging [18, 20], most delegate their
data movements to MPI and it is widely acknowledged that MPI is here to stay.
However, MPI has to evolve to effectively support the demanding requirements
imposed by novel architectures, programing approaches, and dynamic runtime
systems. In particular, its support for fault tolerance has always been inade-
quate [13]. To address the growing interest in fault-aware MPI, a working group
has been formed in the context of the MPI Forum. Their User-Level Failure Mit-
igation (ULFM) [1] proposal features the basic interface and new semantics to
enable applications and libraries to repair the state of MPI and tolerate failures.
The purpose of this paper is to evaluate the tradeoffs that are needed for the
integration of this fault mitigation specification and its impact (or lack thereof)
on MPI performance and scalability. The contributions of this work are to eval-
uate the difficulties faced by MPI implementors, and demonstrate the feasibility
of a low-impact implementation on the failure-free performance as well as an
estimate of the recovery time of the MPI state after a failure.

The remainder of this paper is organized as follows: the next section intro-
duces a short history of fault tolerance in MPI; Section 3 presents the constructs
introduced by the proposal; Section 4 discusses the challenges faced by MPI im-
plementors; then the performance impact of the implementation in Open MPI
is discussed in Section 5 before we conclude in Section 6.

2 Related Work

Efforts toward fault tolerance in MPI have previously been attempted. Auto-
matic fault tolerance [5, 6] is a compelling approach for users, as failures are
completely masked and handled internally by the MPI library, which requires
no new interfaces to MPI or application code changes. Unfortunately, many re-
cent studies point out that automatic approaches, either based on checkpoints
or replication, will exhibit poor efficiency on Exaflop platforms [3, 4].

Application Based Fault Tolerance (ABFT) [8, 10, 15] is another approach
that promises better scalability, at the cost of significant algorithm and applica-
tion code changes. Despite some limited successes [2, 13], MPI interfaces need to
be extended to effectively support ABFT. The most notable past effort is FT-
MPI [11]. Several recovery modes were available to the user. In the Blank mode,
failed processes were replaced by MPI_PROC_NULL; messages to and from them
were silently ignored and collective algorithms had to be significantly modified.
In the Replace mode, faulty processes were replaced with new processes. In all
cases, only MPI_COMM_WORLD would be repaired and the application was in charge
of rebuilding any other communicators, leading to difficult library composition.
No standardization effort was pursued, and it was mostly used as a playground
for understanding the fundamental concepts.

A more recent effort to introduce failure handling mechanisms was the Run-
Through Stabilization proposal [16]. This proposal introduced many new con-

4 http://mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf



structs for MPI including the ability to “validate” communicators as a way of
marking failure as recognized and allowing the application to continue using
the communicator. It included other new ideas such as Failure Handlers for
uniform failure notification. Because of the implementation complexity imposed
by resuming operations on failed communicators, this proposal was eventually
unsuccessful in its introduction to the MPI Standard.

3 New MPI Constructs

This section succinctly presents the prominent interfaces proposed to enable
effective support of User-Level Failure Mitigation for MPI applications. The
interested reader can refer to the technical document for a complete description
of the interfaces [1] and to the amended standard draft5.

Designing the mechanism that users would use to manage failures was built
around three concepts: 1) simplicity, the API should be easy to understand and
use in most common scenarios; 2) flexibility, the API should allow varied fault
tolerant models to be built as external libraries and; 3) absence of deadlock, no
MPI call (point-to-point or collective) can block indefinitely after a failure, but
must either succeed or raise an MPI error. Two major pitfalls must be avoided:
jitter prone, permanent monitoring of the health of peers a process is not actively
communicating with, and expensive consensus required for returning consistent
errors at all ranks. The operative principle is then that errors (MPI_ERR_PROC_-
FAILED) are not indicative of the return status on remote processes, but are
raised only at a particular rank, when a particular operation cannot complete
because a participating peer has failed. The following functions provide the basic
blocks for maintaining consistency and enabling recovery of the state of MPI.

MPI_COMM_FAILURE_ACK & MPI_COMM_FAILURE_GET_ACKED: These two calls al-
low the application to determine which processes within a communicator have
failed. The acknowledgement function serves to mark a point in time which will
be used as a reference. The function to get the acknowledged failures refers back
to this reference point and returns the group of processes which were locally
known to have failed. After acknowledging failures, the application can resume
MPI_ANY_SOURCE point-to-point operations between non-failed processes, but op-
erations involving failed processes (such as collective operations) will likely con-
tinue to raise errors.

MPI_COMM_REVOKE: Because failure detection is not global to the communicator,
some processes may raise an error for an operation, while others do not. This
inconsistency in error reporting may result in some processes continuing their
normal, failure-free execution path, while others have diverged to the recovery
execution path. As an example, if a process, unaware of the failure, posts a recep-
tion from another process that has switched to the recovery path, the matching
send will never be posted. Yet no failed process participates in the operation

5 http://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323



and it should not raise an error. The receive operation is effectively deadlocked.
The revoke operation provides a mechanism for the application to resolve such
situations before entering the recovery path. A revoked communicator becomes
improper for further communication, and all future or pending communications
on this communicator will be interrupted and completed with the new error code
MPI_ERR_REVOKED. It is notable that although this operation is not collective (a
process can enter it alone), it affects remote ranks without a matching call.

MPI_COMM_SHRINK: The shrink operation allows the application to create a new
communicator by eliminating all failed processes from a revoked communicator.
The operation is collective and performs a consensus algorithm to ensure that
all participating processes complete the operation with equivalent groups in the
new communicator. This function cannot return an error due to process failure.
Instead, such errors are absorbed as part of the consensus algorithms and will
be excluded from the resulting communicator.

MPI_COMM_AGREE: This operation provides an agreement algorithm which can
be used to determine a consistent state between processes when such strong
consistency is necessary. The function is collective and forms an agreement over
a boolean value, even when failures have happened or the communicator has
been revoked. The agreement can be used to resolve a number of consistency
issues after a failure, such as uniform completion of an algorithmic phase or
collective operation, or as a key building block for strongly consistent failure
handling approaches (such as transactions).

4 Implementation issues

In this section, we detail the challenges and advantages of the aforementioned
MPI constructs. They unfold along three main axes, the amount of supple-
mentary state and memory to be kept within the MPI library, the additional
operations to be executed on the critical path of communication routines and
the algorithmic cost of failure recovery routines. We discuss, in general, options
available to implementors, and highlight issues with insight from a prototype
implementation in Open MPI [12].

4.1 Impact on communication routines

Memory: Because a communicator cannot be repaired, tracking the state of
failed processes imposes a minimal memory overhead. From a practical perspec-
tive each node needs a global list of detected failures, shared by all communi-
cators; its size grows linearly with the number of failures, and it is empty as
long as no failures occur. Within each communicator, the supplementary state
is limited to two values: whether the communicator is revoked or not, and an
index in the global list of failures denoting the last acknowledged failure (with
MPI_COMM_FAILURE_ACK). For efficiency reasons, an implementation may decide



to cache the fact that some failures have happened in the communicator so that
collective operations and MPI_ANY_SOURCE receptions can bail out quickly. Over-
all, the supplementary memory consumption from fault tolerant constructs is
small, independent of the total number of nodes, and unlikely to affect the cache
and TLB hit rates.

Conditionals: Another concern is the number of supplementary conditions on
the latency critical path. Indeed, most completion operations require a supple-
mentary conditional statement to handle the case where the underlying commu-
nication context has been revoked. However, the prediction branching logic of
the processor can be hinted to favor the failure free outcome, resulting in a single
load of a cached value and a single, mostly well-predicted, branching instruction,
unlikely to affect the instruction pipeline. It is notable that non-blocking opera-
tions raise errors related to process failure only during the completion step, and
thus do not need to check for revocation before the latency critical section.

Matching logic: MPI_COMM_REVOKE does not have a matching call on other pro-
cesses on which it has an effect. As such, it might add detrimental complexity
to the matching logic. However, any MPI implementation needs to handle un-
expected messages. The order of revocation messages delivery is loose enough
that the handling of revocation notices can be integrated within the existing
unexpected message matching logic. In our implementation in Open MPI, we
leverage the active message low level transport layer to introduce revocation as
a new active message tag, without a single change to the matching logic.

Collective operations: A typical MPI implementation supports a large number of
collective algorithms, which are dynamically selected depending on criteria such
as communicator or message size and hardware topology. The loose requirements
of the proposal concerning error reporting of process failures in collective oper-
ations limits the impact it has on collective operations. Typically, the collective
communication algorithms and selection logic are left unchanged. The only new
requirement is that failures happening at any rank of the communicator cause all
processes to exit the collective (successfully for some, with an error for others).
Due to the underlying loosely-connected topologies used by some algorithms, a
point-to-point based implementation of a collective communication is unlikely
to detect all process failures. Fortunately, a practical implementation exists that
does not require modifying any of the collective operations: when a rank raises
an error because of a process failure, it can revoke an internal, temporary com-
munication context associated with the collective operation. As the revocation
notice propagates on the internal communicator, it interrupts the point-to-point
operations of the collective. An error code is returned to the high level MPI
wrapper, which in turn raises the appropriate error on the user’s communicator.

4.2 Recovery routines

Some of the recovery routines described in Section 3 are unique in their ability
to deliver a valid result despite the occurrence of failures. This specification of



correct behavior across failures calls for resilient, more complex algorithms. In
most cases, these functions are intended to be called sparingly by users, only
after actual failures have happened, as a means of recovering a consistent state
across all processes. The remainder of this section describes the algorithms that
can be used to deliver this specification and their cost.

Agreement: The agreement can be conceptualized as a failure-resilient reduc-
tion on a boolean value. Many agreement algorithms have been proposed in the
literature; the log-scaling two-phase consensus algorithm used by the ULFM pro-
totype is one of many possible implementations of MPI_COMM_AGREE operation
based upon prior work in the field. Specifically, this algorithm is a variation of
the multi-level two-phase commit algorithms [19]. The algorithm first performs
a reduction of the input values to an elected coordinator in the communica-
tor. The coordinator then makes a decision on the output value and broadcasts
that value back to all of the alive processes in the communicator. The complex-
ity of the agreement algorithm appears when adapting to an emerging process
failure of the coordinator and/or participants. A more extensive discussion of
the algorithmic complexity has been published by Hursey, et.al. [17]. The algo-
rithmic complexity of this implementation is O(log(n)) for the failure free case,
matching that of an MPI_ALLREDUCE operation over the alive processes in the
communicator.

Revoke: Although the revoke operation is not collective, the revocation notifica-
tion needs to be propagated to all alive processes in the specified communicator,
even when new failures happen during the revoke propagation. These require-
ments are not without recalling those from the reliable broadcast [14]. Among the
four defining qualities of a reliable broadcast (Termination, Validity, Integrity,
Agreement), the termination and integrity criteria can be relaxed in the context
of the revoke algorithm. If a failure during the course of the revoke algorithm
kills the initiator and all the processes targeted, the Revoke notification is indeed
lost, but the observed behavior, from the view of the application, is indiscernible
from a failure at the initiator before the propagation started. As the algorithm
still ensures agreement, there are no opportunities for inconsistent views.

In the ULFM implementation, we used a naive flooding algorithm for sim-
plicity. The initiator marks the communicator as revoked and sends a Revoke
message to every processes in the groups (local and remote) of the communicator.
Upon reception of a revoke message, if the communicator is not already revoked,
it is revoked and the process acts as a new initiator. Better algorithms exist,
but even this naive approach provide reasonable performance (see Section 5)
considering it is called only in response to an actual failure.

Shrink: The Shrink operation is algorithmically an agreement on which the
consensus is done on the group of failed processes. Hence, the two operations
have the same algorithmic complexity. Indeed, in the prototype implementation,
MPI_COMM_AGREE and MPI_COMM_SHRINK share the same internal implementation
of the agreement.



5 Performance Analysis

The following analysis used a prototype of the ULFM proposal based on the
development trunk of Open MPI [12] (r26237). The test results presented were
gathered from the Smoky system at Oak Ridge National Laboratory. Each node
contains four quad-core 2.0 GHz AMD Opteron processors with 2 GB of memory
per compute core. Compute nodes are connected with gigabit Ethernet and
InfiniBand. Some shared-memory benchmarks were conducted on Romulus, a
6× 8-core AMD Opteron 6180 SE with 256GB of memory (32GB per socket) at
the University of Tennessee.

The NetPIPE benchmark (v3.7) was used to assess the 1-byte latency and
bandwidth impact of the modifications necessary for the ULFM support in Open
MPI. We compare the vanilla version of Open MPI (r26237) with the ULFM
enabled version on Smoky. Table 1 highlights the fact that the differences in
performance are well below the noise limit, and that the standard deviation is
negligible proving the performance stability and lack of impact.

1-byte Latency (microseconds) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference
Shared Memory 0.8008 0.0093 0.8016 0.0161 0.0008
TCP 10.2564 0.0946 10.2776 0.1065 0.0212
OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference
Shared Memory 10,625.92 23.46 10,602.68 30.73 -23.24
TCP 6,311.38 14.42 6,302.75 10.72 -8.63
OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

Table 1. NetPIPE results on Smoky.

The impact on shared memory systems, which are sensitive even to small
modifications of the MPI library, has been further assessed on the Romulus
machine – a large shared memory machine – using the IMB benchmark suite
(v3.2.3). As shown in Figure 1, the duration difference of all the benchmarks
(point-to-point and collective) remains below 5%, thus within the standard de-
viation of the implementation on that machine.

To measure the impact of the prototype on a real application, we used the
Sequoia AMG benchmark6. This MPI intensive benchmark is an Algebraic Mult-
Grid (AMG) linear system solver for unstructured mesh physics. A weak scaling
study was conducted up to 512 processes following the problem Set 5. In Fig-
ure 2, we compare the time slicing of three main phases (Solve, Setup, and
SStruct) of the benchmark, with, side by side, the vanilla version of the Open
MPI implementation, and the ULFM enabled one. The application itself is not
fault tolerant and does not use the features proposed in ULFM. The goal of
this benchmark is to demonstrate that a careful implementation of the proposed

6 https://asc.llnl.gov/sequoia/benchmarks/#amg



-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

%
 d

if
fe

re
n

c
e

U
L

F
M

 i
s
 f

a
s
te

r
V

a
n

il
la

 i
s
 f

a
s
te

r

A
ll
R

e
d

u
c
e
 4

B

A
ll
R

e
d

u
c
e
 4

M
B

A
ll
to

A
ll
 4

B

A
ll
to

A
ll
 4

M
B

B
c
a
s
t 

4
B

B
c
a
s
t 

4
M

B

R
e
d

u
c
e
 4

B

R
e
d

u
c
e
 4

M
B

S
e
n

d
R

e
c
v
 4

B

S
e
n

d
R

e
c
v
 4

M
B

P
in

g
P

in
g

 4
B

P
in

g
P

in
g

 4
M

B

P
in

g
P

o
n

g
 4

B

P
in

g
P

o
n

g
 4

M
B

B
a
rr

ie
r

Bandwidth benchmark
Latency benchmark

Fig. 1. The Intel MPI Benchmarks: relative difference between ULFM and the vanilla
Open MPI on shared memory (Romulus). Standard deviation ≈5% on 1,000 runs.

semantic does not impact the performance of the MPI implementation, and ul-
timately leaves unchanged the behavior and performance of legacy applications.
The results show that the performance difference is negligible.

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 64 128 256 512

C
u

m
u

la
te

d
 T

im
e

 (
s

)

Number of processes

F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T

Solve
Setup
SStruct

Fig. 2. Comparison of the vanilla and
ULFM versions of Open MPI running
Sequoia-AMG at different scales (Smoky).

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 64 128 256

T
im

e
 (

m
s

)

Number of Processes

Detection
Revoke
Shrink

Fig. 3. Evaluation of the Fault Injection
Benchmark with full recovery at different
scales (Smoky).

To assess the overheads of recovery constructs, we developed a synthetic
benchmark that mimics the behavior of a typical fixed-size tightly-coupled fault-
tolerant application. Unlike a normal application it performs an infinite loop,
where each iteration contains a failure and the corresponding recovery procedure.
Each iteration consists of 5 phases: in the first phase (Detection), all processes
but a designated victim enter a Barrier on the intracommunicator. The victim
dies, and the failure detection mechanism makes all surviving processes exit the
Barrier, some with an error code. In Phase 2 (Revoke), the surviving processes
that detected a process-failure related error during the previous phase invoke the
new construct MPI_COMM_REVOKE. Then they proceed to Phase 3 (Shrink) where
the intracommunicator is shrunk using MPI_COMM_SHRINK. The two other phases
serve to repair a full-size intracommunicator using spawn and intercommunicator
merge operations to allow the benchmark to proceed to the next round.



In Figure 3, we present the timing of each phase, averaged upon 50 iterations
of the benchmark loop, for a varying number of processes on the Smoky ma-
chine. We focus on the three points related to ULFM: failure detection, revoke
and shrink. The failure detection is not impacted by the scale. In the prototype
implementation, the detection happens at two levels, either in the runtime sys-
tem or in the MPI library (when it occurs on an active link). Between the two
detectors, all ranks get notified within 30ms of the failure. Although the revoke
call will inject a linear number of messages (at each rank) in the network to
implement the level of reliability required for this operation, the duration of this
call itself is under 50µs and is not visible in the figure. The network is disturbed
for a longer period, due to the processing of the messages, but this disturbance
will appear in the network only after a failure occurred. The last call shown in
the figure is the shrink operation. Although its duration increases linearly with
the number of processes (the figure has a logarithmic scale on the x-axis), this
cost must only be paid after a failure, in order to continue using collective opera-
tions. In its current implementation, shrink requires an agreement, the allocation
of a new communicator identifier, and the creation of the communicator (with
MPI_COMM_SPLIT). Most of the time spent in the shrink operation is not in the
agreement (which scales logarithmically), but in the underlying implementation
of the communicator creation.

6 Conclusion

Many responsible voices agree that sharp increases in the volatility of future,
extreme scale computing platforms is likely to imperil our ability to use them
for advanced applications that deliver meaningful scientific results and maximize
research productivity. Moreover, it is clear that any techniques developed to
address this volatility must be supported in the programming and execution
model. Since MPI is currently, and will likely continue to be, in the medium-
term, both the de-facto programming model for distributed applications and the
default execution model for large scale platforms running at the bleeding edge,
MPI is the place in the software infrastructure where semantic and run-time
support for application faults needs to be provided.

The ULFM proposal is a careful but important step forward toward accom-
plishing this goal. It not only delivers support for a number of new and innovative
resilience techniques, it provides this support through a simple, straightforward
and familiar API that requires minimal modifications of the underlying MPI
implementation. Moreover, it is backward compatible with previous version of
the MPI standard, so that non fault-tolerant applications (legacy or otherwise)
are supported without any changes to the code. Perhaps most significantly, ap-
plications can use ULFM-enabled MPI without experiencing any degradation in
their performance, as we demonstrate in this paper.

Several applications, ranging from Master-Worker to tightly coupled, are cur-
rently being refactored to take advantage of the semantics in this proposal. Be-
yond applications, the expressivity of this proposal is investigated in the context
of providing convenience fault tolerance models as portable libraries.



References

1. Bland, W., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: A proposal for
user-level failure mitigation in the mpi-3 standard. Tech. rep., Department of Elec-
trical Engineering and Computer Science, University of Tennessee (February 2012)

2. Bland, W., Du, P., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: A
checkpoint-on-failure protocol for algorithm-based recovery in standard MPI. In:
18th Euro-Par. p. to appear. LNCS, Springer (August 2012)

3. Bosilca, G., Bouteiller, A., Brunet, É., Cappello, F., Dongarra, J., Guermouche,
A., Hérault, T., Robert, Y., Vivien, F., Zaidouni, D.: Unified Model for Assessing
Checkpointing Protocols at Extreme-Scale. Tech. report RR-7950, INRIA (2012)

4. Bougeret, M., Casanova, H., Robert, Y., Vivien, F., Zaidouni, D.: Using group
replication for resilience on exascale systems. Tech. Rep. 265, LAWNs (2012)

5. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. CCPE 22(16), 2196–2211 (2010)

6. Buntinas, D., Coti, C., Herault, T., Lemarinier, P., Pilard, L., Rezmerita, A., Ro-
driguez, E., Cappello, F.: Blocking vs. non-blocking coordinated checkpointing for
large-scale fault tolerant MPI protocols. FGCS 24(1), 73 – 84 (2008)

7. Cappello, F., Geist, A., Gropp, B., Kalé, L.V., Kramer, B., Snir, M.: Toward ex-
ascale resilience. IJHPCA 23(4), 374–388 (2009)

8. Davies, T., Karlsson, C., Liu, H., Ding, C., , Chen, Z.: High Performance Linpack
Benchmark: A Fault Tolerant Implementation without Checkpointing. In: 25th
ICS. pp. 162–171. ACM (2011)

9. Dongarra, J., Beckman, P., et al.: The international exascale software roadmap.
IJHPCA 25(11), 3–60 (2011)

10. Du, P., Bouteiller, A., et al.: Algorithm-based fault tolerance for dense matrix
factorizations. In: 17th SIGPLAN PPoPP. pp. 225–234. ACM (2012)

11. Fagg, G., Dongarra, J.: FT-MPI: Fault tolerant MPI, supporting dynamic applica-
tions in a dynamic world. In: 7th EuroPVM/MPI. LNCS, vol. 1908, pp. 346–353.
Springer (2000)

12. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: 11th EuroPVM/MPI. LNCS, vol. 3241, pp. 353–377. Springer
(2004)

13. Gropp, W., Lusk, E.: Fault tolerance in message passing interface programs. IJH-
PCA 18, 363–372 (2004)

14. Hadzilacos, V., Toueg, S.: Distributed systems (2nd ed.). chap. Fault-tolerant
broadcasts and related problems, pp. 97–145. ACM/Addison-Wesley (1993)

15. Huang, K., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Transactions on Computers 100(6), 518–528 (1984)

16. Hursey, J., Graham, R.L., Bronevetsky, G., Buntinas, D., Pritchard, H., Solt, D.G.:
Run-through stabilization: An MPI proposal for process fault tolerance. In: 18th
EuroMPI. LNCS, vol. 6690, pp. 329–332. Springer (2011)

17. Hursey, J., Naughton, T., Vallee, G., Graham, R.L.: A log-scaling fault tolerant
agreement algorithm for a fault tolerant MPI. In: 18th EuroMPI. LNCS, vol. 6690,
pp. 255–263. Springer (2011)

18. Lusk, E., Chan, A.: Early experiments with the OpenMP/MPI hybrid program-
ming model. In: 4th IWOMP, LNCS, vol. 5004, pp. 36–47. Springer (2008)

19. Mohan, C., Lindsay, B.: Efficient commit protocols for the tree of processes model
of distributed transactions. In: SIGOPS OSR. vol. 19, pp. 40–52. ACM (1985)

20. Sterling, T.: HPC in phase change: Towards a new execution model. In: HPCCS –
VECPAR 2010, LNCS, vol. 6449, pp. 31–31. Springer (2011)


